335 research outputs found

    Fatigue reduces the complexity of knee extensor torque during fatiguing sustained isometric contractions

    Get PDF
    The temporal structure, or complexity, of muscle torque output reflects the adaptability of motor control to changes in task demands. This complexity is reduced by neuromuscular fatigue during intermittent isometric contractions. We tested the hypothesis that sustained fatiguing isometric contractions would result in a similar loss of complexity. To that end, nine healthy participants performed, on separate days, sustained isometric contractions of the knee extensors at 20% MVC to task failure and at 100% MVC for 60 s. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling were quantified by calculating approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Global, central and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. Fatigue reduced the complexity of both submaximal (ApEn from 1.02 ± 0.06 to 0.41 ± 0.04, P < 0.05) and maximal contractions (ApEn from 0.34 ± 0.05 to 0.26 ± 0.04, P < 0.05; DFA α from 1.41 ± 0.04 to 1.52 ± 0.03, P < 0.05). The losses of complexity were accompanied by significant global, central and peripheral fatigue (all P < 0.05). These results demonstrate that a fatigue-induced loss of torque complexity is evident not only during fatiguing intermittent isometric contractions, but also during sustained fatiguing contractions

    Mechanomyography versus Electromyography, in monitoring the muscular fatigue

    Get PDF
    BACKGROUND: The use of the mechanomyogram (MMG) which detects muscular vibrations generated by fused individual fiber twitches has been refined. The study addresses a comparison of the MMG and surface electromyogram (SEMG) in monitoring muscle fatigue. METHODS: The SEMG and MMG were recorded simultaneously from the same territory of motor units in two muscles (Biceps, Brachioradialis) of the human (n = 18), during sustained contraction at 25 % MVC (maximal voluntary contraction). RESULTS: The RMS (root mean square) of the SEMG and MMG increased with advancing fatigue; MF (median frequency) of the PSD (power density spectra) progressively decreased from the onset of the contraction. These findings (both muscles, all subjects), demonstrate both through the SEMG and MMG a central component of the fatigue. The MF regression slopes of MMG were closer to each other between men and women (Biceps 1.55%; Brachialis 13.2%) than were the SEMG MF slopes (Biceps 25.32%; Brachialis 17.72%), which shows a smaller inter-sex variability for the MMG vs. SEMG. CONCLUSION: The study presents another quantitative comparison (MF, RMS) of MMG and SEMG, showing that MMG signal can be used for indication of the degree of muscle activation and for monitoring the muscle fatigue when the application of SEMG is not feasible (chronical implants, adverse environments contaminated by electrical noise)

    Muscle Fatigue Analysis Using OpenSim

    Full text link
    In this research, attempts are made to conduct concrete muscle fatigue analysis of arbitrary motions on OpenSim, a digital human modeling platform. A plug-in is written on the base of a muscle fatigue model, which makes it possible to calculate the decline of force-output capability of each muscle along time. The plug-in is tested on a three-dimensional, 29 degree-of-freedom human model. Motion data is obtained by motion capturing during an arbitrary running at a speed of 3.96 m/s. Ten muscles are selected for concrete analysis. As a result, the force-output capability of these muscles reduced to 60%-70% after 10 minutes' running, on a general basis. Erector spinae, which loses 39.2% of its maximal capability, is found to be more fatigue-exposed than the others. The influence of subject attributes (fatigability) is evaluated and discussed

    Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations.

    Get PDF
    Exercise-induced increases in core body temperature could negative impact performance and may lead to development of heat-related illnesses. The use of cooling techniques prior (pre-cooling), during (per-cooling) or directly after (post-cooling) exercise may limit the increase in core body temperature and therefore improve exercise performance. The aim of the present review is to provide a comprehensive overview of current scientific knowledge in the field of pre-cooling, per-cooling and post-cooling. Based on existing studies, we will discuss 1) the effectiveness of cooling interventions, 2) the underlying physiological mechanisms and 3) practical considerations regarding the use of different cooling techniques. Furthermore, we tried to identify the optimal cooling technique and compared whether cooling-induced performance benefits are different between cool, moderate and hot ambient conditions. This article provides researchers, physicians, athletes and coaches with important information regarding the implementation of cooling techniques to maintain exercise performance and to successfully compete in thermally stressful conditions

    Handgrip performance in relation to self-perceived fatigue, physical functioning and circulating IL-6 in elderly persons without inflammation

    Get PDF
    BACKGROUND: Low grip strength is recognized as one of the characteristics of frailty, as are systemic inflammation and the sensation of fatigue. Contrary to maximal grip strength, the physical resistance of the muscles to fatigue is not often included in the clinical evaluation of elderly patients. The aim of this study was to investigate if the grip strength and the resistance of the handgrip muscles to fatigue are related to self-perceived fatigue, physical functioning and circulating IL-6 in independently living elderly persons. METHODS: Forty elderly subjects (15 female and 25 male, mean age 75 ± 5 years) were assessed for maximal grip strength, as well as for fatigue resistance and grip work (respectively time and work delivered until grip strength drops to 50% of its maximum during sustained contraction), self perceived fatigue (VAS-Fatigue, Mob-Tiredness scale and the energy & fatigue items of the WHOQOL-100), self rated physical functioning (domain of physical functioning on the MOS short-form) and circulating IL-6. Relationships between handgrip performance and the other outcome measures were assessed. RESULTS: In the male participants, fatigue resistance was negatively related to actual sensation of fatigue (VAS-F, p < .05) and positively to circulating IL-6 (p < .05). When corrected for body weight, the relations of fatigue resistance with self-perceived fatigue became stronger and also apparent in the female. Grip strength and grip work were significantly related with several items of self-perceived fatigue and with physical functioning. These relations became more visible by means of higher correlation coefficients when grip strength and grip work were corrected for body weight. CONCLUSION: Well functioning elderly subjects presenting less handmuscle fatigue resistance and weaker grip strength are more fatigued, experience more tiredness during daily activities and are more bothered by fatigue sensations. Body weight seems to play an important role in the relation of muscle performance to fatigue perception. Elderly patients complaining from fatigue should be physically assessed, both evaluating maximal grip strength and fatigue resistance, allowing the calculation of grip work, which integrates both parameters. Grip work might best reflect the functional capacity resulting from the development of a certain strength level in relation to the time it can be maintained

    Modulation in voluntary neural drive in relation to muscle soreness

    Get PDF
    The aim of this study was to investigate whether (1) spinal modulation would change after non-exhausting eccentric exercise of the plantar flexor muscles that produced muscle soreness and (2) central modulation of the motor command would be linked to the development of muscle soreness. Ten healthy subjects volunteered to perform a single bout of backward downhill walking exercise (duration 30 min, velocity 1 ms−1, negative grade −25%, load 12% of body weight). Neuromuscular test sessions [H-reflex, M-wave, maximal voluntary torque (MVT)] were performed before, immediately after, as well as 1–3 days after the exercise bout. Immediately after exercise there was a −15% decrease in MVT of the plantar flexors partly attributable to an alteration in contractile properties (−23% in electrically evoked mechanical twitch). However, MVT failed to recover before the third day whereas the contractile properties had significantly recovered within the first day. This delayed recovery of MVT was likely related to a decrement in voluntary muscle drive. The decrease in voluntary activation occurred in the absence of any variation in spinal modulation estimated from the H-reflex. Our findings suggest the development of a supraspinal modulation perhaps linked to the presence of muscle soreness

    The effect of massage on localized lumbar muscle fatigue

    Get PDF
    BACKGROUND: There is not enough evidence to support the efficacy of massage for muscle fatigue despite wide utilization of the modality in various clinical settings. This study investigated the influence of massage application on localized back muscle fatigue. METHODS: Twenty-nine healthy subjects participated in two experimental sessions (massage and rest conditions). On each test day, subjects were asked to lie in the prone position on a treatment table and perform sustained back extension for 90 seconds. Subjects then either received massage on the lumbar region or rested for a 5 minute duration, then repeated the back extension movement. The median frequency (MDF), mean power frequency (MNF), and root mean square (RMS) amplitude of electromyographic signals during the 90 second sustained lumbar muscle contraction were analyzed. The subjective feeling of fatigue was then evaluated using the Visual Analogue Scale (VAS). RESULTS: MDF and MNF significantly declined with time under all conditions. There was no significant difference in MDF, MNF or RMS value change between before and after massage, or between rest and massage conditions. There was a significant increase in fatigue VAS at the end of the 2(nd) back extension with rest condition. There was a significant difference in fatigue VAS change between massage and rest condition. CONCLUSIONS: A significant difference was observed between massage and rest condition on VAS for muscle fatigue. On EMG analysis, there were no significant differences to conclude that massage stimulation influenced the myoelectrical muscle fatigue, which is associated with metabolic and electrical changes

    Transcranial magnetic stimulation in sport science: a commentary

    Get PDF
    The aim of this commentary is to provide a brief overview of transcranial magnetic stimulation (TMS) and highlight how this technique can be used to investigate the acute and chronic responses of the central nervous system to exercise. We characterise the neuromuscular responses to TMS and discuss how these measures can be used to investigate the mechanisms of fatigue in response to locomotor exercise. We also discuss how TMS might be used to study the corticospinal adaptations to resistance exercise training, with particular emphasis on the responses to shortening/lengthening contractions and contralateral training. The limited data to date suggest that TMS is a valuable technique for exploring the mechanisms of central fatigue and neural adaptation
    • …
    corecore